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M O D E L  P R O B L E M  OF I N S T A N T A N E O U S  M O T I O N  

OF A T H R E E - P H A S E  C O N T A C T  LINE 

V .  V .  P u k h n a c h e v  a n d  I. B .  S e m e n o v a  UDC 532.526 

Hydrodynamic problems of fluid flow with three-phase contact lines (for example, solid body- 
liquid-gas or solid body and two nonmixing liquids) are of special interest. Much attention has 
been paid lately to steady and quasisteady flows. Significantly unsteady problems of this kind have 
almost escaped consideration. In the present paper, we study a model problem of a significantly 
unsteady motion of a finite volume of an incompressible fluid with a three-phase contact line. 
The static contact angle is assumed to be right and the initial free surface of the liquid is 
assumed to be cylindrical. One of the planes instantaneously begins to move toward the other 
with a constant finite velocity. Flows with high Reynolds numbers and small capillary numbers 
are considered. Mass forces are ignored in the problem. The basic result is the construction of 
a formal asymptotic of the solution at small times. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider a model problem of dramatically unsteady motion 
of a finite volume of a viscous incompressible fluid enclosed between two infinite solid planes. Initially, these 
planes are located at a distance 2a from each other. The static contact angle (i.e., the angle between the free 
and solid boundaries) is ~r/2 and the free surface of the fluid is assumed to be cylindrical (with a circular cross 
section of radius b). One of the planes suddenly begins its motion toward the other with a constant velocity V. 
Flows with high Reynolds numbers Re and low capillary numbers Ca are considered (for example, for water 
at room temperature  and the parameters a = b = 10 cm and V = 10 cm/sec, we have Re = Va/v  = 104 and 
Ca = pvV/o" = 1.33 �9 10 - 3 ,  where v is the kinematic viscosity of the fluid, a is the surface tension coefficient, 
and p is the fluid density). The choice of a cylindrical free surface allows us to use in a specially marked 
central flow region the solution derived by L. V. Ovsyannikov [1] for a similar problem in the case of an ideal 
incompressible fluid. (A wide range of exact solutions of the Euler equations found by L. V. Ovsyannikov 
was studied in [2, 3].) Pukhnachev noted [4] that the corresponding solution obtained by Ovsyannikov also 
satisfies the conditions at the free boundary in the case of a viscous incompressible fluid. This gives grounds 
to assume that  an unsteady boundary layer near the free surface does not appear. A similar problem for an 
unsteady boundary layer near solid surfaces without free boundaries was solved by Blasius [5]. A solution 
similar to his solution can be used in this problem for regions immediately adjacent to the solid boundary and 
remote from the free boundary. Thus, the problem actually reduces to determination of motion in the region 
located in an immediate vicinity from both solid and free boundaries, i.e., in the vicinity of the three-phase 
contact line. The  resultant flow is assumed to be axisymmetric. In addition, mass forces are assumed to be 
absent. 

We introduce a cylindrical coordinate system (r, 0, z), where the z axis is directed along the fluid 
cylinder centerline. With account of the above assumptions, the Navier-Stokes equations in the cylindrical 
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coordinate system have the form 

OVr OVr OVr 10p [" 02Vr 02Vr 1 0Vr Vr ) 
Ot +vr o--~-+Vz o---~=--pO---~+u~,-~-r2 +-~-z 2 + r  Or r2 , (1.1) 

Ovz v Or, Or, l op  ( 02v, 02v, l Ov, ~ , 
Ot + Or +vz o---~-- pOz t-Vk Or2 +--ff~z2 +r--~-r ] (1.2) 

OVr OVz Vr 
Or + ~ + --r = 0, (1.3) 

where vr is the velocity-vector component  in the direction of variation of the radius r, Vz is the velocity-vector 
component along the z axis, p is the pressure in the fluid, and t is the  time. 

The continuity equation (1.3) allows us to introduce the Stokes stream function r so tha t  vr = Or 
and vz = -O~b/(rOr). Eliminating the pressure from Eqs. (1.1) and (1.2) by means of cross differentiation, we 
obtain 

0/~r v/~/~r + 1 0 r  0s162 1 0 r  0 h e  2 ; , 0 r  
ot = ~ O~ Oz ~ Oz o--;- + -~zaw-g-~, (1.4) 

where h = 02~Or 2 -  O/(rOr)+ 02/Oz 2 is the  Stokes operator. This equation is considered now in an immediate 
vicinity of the solid boundary, but at a distance from the free boundary  (so that  the effect of the latter could 
be ignored for a while). In accordance wi th  [5], in the case of mot ion  started from a quiescent state, the 
term vAA~b is dominating at the initial t ime when the boundary layer is very thin yet ( the boundary layer 
thickness is 5 ,-~ vr~) ,  whereas the contr ibution of convective terms to the magni tude  of acceleration is 
small. The te rm mentioned is balanced by the unsteady local acceleration O;kr and Eq. (1.4) can be 
asymptotically simplified: 

0 s 1 6 2  = ~ s 1 6 3 1 6 2  (1.5) 
ot 

In this region, we can seek an approximate  solution by analogy with the asymptot ic  solution derived by Blasius 
[5] in the form Crn = v/ '~r2cf(z/Vr~) + O(Vt/a).  Substi tution of this representation of the  stream function 
into (1.5) yields the following fourth-order ordinary differential equation for the function f ( ( ) :  

1 f l I  ~ 'dlI  f i r  ( ~ ) I  2 ~ _ ~ j  = r  _ _ f I I  = fIV (~- = z/V/-~). 

Its integration gives fIII + (~'/2)flI = Cl, where cl is a certain constant.  Nevertheless, since the adhesion 
conditions should be fulfilled at the wall, from which it follows tha t  f (0)  = fI(0) = 0, and, in addition, the 
condition at infinity fI  __. 1 should be fulfilled as ~ ~ e~, we have Cl = 0 and the above equation has the 
unique solution 

1 r t 

0 0 
In this representation, the constant  c remains undetermined.  Considering the flow in the central region 

of the cylinder, i.e., in the region that  is not adjacent to the solid boundaries, we are justified in using the 
solution obtained by Ovsyannikov [1] for a similar problem with an ideal fluid. (The main difference between 
these two problems is observed in the vicinity of the solid wall with no-slip conditions for an ideal fluid and 
adhesion conditions for a viscous fluid.) In accordance with the solution of this equation,  if the critical point 
is in the center of symmetry, the velocity field has the form 

Vr Vz  
vr = 2a(1 - Yt /a) '  v, = a(1 - Yt/a)" 

If we introduce a new coordinate z' = z + a(1 - Vt/a) (the radius remains unchanged: r' = r), the lower 
plane corresponds to z ~ = 0. Then,  in the  new coordinates fitted with the lower plane, we have v~ = v~ = 
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Vr'/(2a(1 - Vt/a)) and vz = -Vz' / (a(1 - Vt/a)) + V = v z, + V and, for t = 0, we have v r, = Vr'/(2a) 
and v z, = -Vz ' / a ,  from which we obtain the  stream function ~b = V(r')2z'/(2a). To relate the solutions of 
Ovsyannikov and Blasius, we choose now a previously undetermined constant c = V/(2a). Then,  we have 

,---Vr 2 1 r 1 m2 

_- re / T) m, 
0 0 

where ern is the main term in the expansion of the stream function of the main flow for t --} 0. 
The solution ~brn found is invalid in the  small vicinity of the three-phase contact line for two reasons. 

First, the solution obtained by analogy with the Blasius solution, as mentioned above, does not agree with 
the conditions on the free surface. Second, the  a t tempt  to continue the solution to the moving contact line 
with adhesion conditions preserved leads to the divergence of the Dirichlet integral [7, 8]. This means that 
the dissipation rate of the kinetic energy in the fluid is infinite and the solution has no physical sense. Thus, 
we should separately consider the small vicinity of the three-phase contact line and seek the corresponding 
solution there. 

For this purpose, we consider a vicinity of the contact line of thickness ~f = v /~ ,  which has the order 
of the boundary-layer thickness. We introduce the local coordinates y - z and x = r - b(1 - Vt/a) -1/2. The 
self-similarity of the main term in the asymptot ic  expansion (1.6) leads to the natural  hypothesis of local 
self-similarity of the free surface and the flow in the chosen region. In turn, it follows from this hypothesis 
that the free-surface equation in terms of (x, y) has the following form in the first approximation: 

F(~, 7) = 0. (1.7) 

Here ~ = x/v/-~ and 77 = Y/V~.  Substitution of (1.7) into the kinematic condition on the free surface [6] 
yields 

1 (~OF OF 1 [ OF OF 

We assume that  the velocity components vz = vr -Vb/ (2a) (1-  Vt/a) -3/2 and vy = v z -  V are limited near the 
contact line. In this case, for small values of t, the second term in (1.8) can be ignored. Then the function F 
depends only on Op = arctan(7/~). It follows from (1.7) that  0p = const is the free-surface equation. However, 

in the limit as rp = y / ~  + q 2 ---} ~ ,  the meridional section of the free surface becomes a vertical straight line. 
Thus, in the polar coordinates r n and 0p, equality (1.7) yields 0p -- 7r/2. This means that ,  for small t, the 
free boundary remains close to the cylindrical surface of radius R(t) = b(1 - V t / a )  -1/2, including the contact 
region itself. 

Obviously, in the first approximation in the considered vicinity of the contact line whose width is of 
the order of Vf~, we can ignore the curvature of the line itself and consider the flow to be planar there. In 
the Cartesian coordinates (x, y), the Stokes equation (1.5) is written as 

= (1 .9 )  
Ot 

where A is the Laplace operator and r is the stream function determined so that  v~ = cO(b/Oy and Vy = 
-a(b/Ox are the corresponding components of  the velocity. 

Equation (1.9) has a partial solution r independent of x: ~bp = vf~c2g(y/v/-~), which is important 
for agreement with the main term of the expansion of the stream function of the main flow. Substituting this 
expression into (1.9), we obtain the equation for the function g(7): g m +  guy~2 = 0, which coincides with the 
equation for the function f considered above. From the adhesion conditions on the solid boundary and from 
the conditions at infinity gI ._. 0 and 7 -'* c~ we obtain 

n ! 

(bp=V~Vt ~a ( 2 - ~  / d l / e x p ( -  m----:)drn- 7). (1.10) 
0 0 
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The  constant c2 = Vb/(2a) is chosen from the condition of compatibility with the  main flow. 
At the next step, we seek the asymptotic solution 

= vf~O((,~) + O(t) (1.11) 

for t --~ 0 of Eq. (1.9) wri t ten  in the form 

1 f 0 A ~  0 A ~  
AA@ + 2 (,5-E(- + + SO) = 0. (i.12) 

In deriving the boundary  conditions for @, we use the fact that  the boundary conditions on both 
the solid and free boundaries  should be imposed for a "full" flow, which takes into account all the  three 
components  era, ~p, and ~. 

The  kinematic equat ion on the free boundary [in the coordinate system (x, y) or (~, 7/) fitted with the 
free boundary] [6] is 

for 

where d~ is the radial component  of the main flow writ ten in the coordinates (x, y). In accordance with (1.6), 
(1.10), and (1.11), the lat ter  condition is rewritten as 

Subst i tut ing here the expression for g, 

r ~=o - Vb2a 

V b l  ~ (m_~_~) 
2a 2 v ~ f e x p  - dm 

0 

0 

= 0 .  

and integrating this relation with respect to ~, we obtain 

Vb 1 7 1  m_~_~) ) 
~ 1 ~ = 0 = - - (  r / - 2 a  --~/dl/exp(-o o d m .  (1.13) 

The general form of the  dynamic condition at the free boundary is 

(p~, - p)n + 2pun. n = 2o'Hn, (1.14) 

where n is the unit  normal  to the free surface, D = (•v + (Vv)*)/2 is the strain-rate tensor, H is the mean 
curvature of the surface, and pa is the atmospheric pressure. In our case, in accordance with (1.11), the  normal 
stress -p  + 2puOvz/Ox has the  order of 1 /v~  for t ---* 0; in accordance with (1.7), the capillary pressure aH 
is of the same order. Their  ratio is proportional to the capillary number  Ca, which is assumed to be small. 
Hence, the projection of the  left side of Eq. (1.14) onto the normal to the free surface is O(Ca). In turn,  the 
shear stresses yield 

02(  + + 
for Oy 2 Ox 2 

where / ~  is the shear stress corresponding to the main flow. With account o f  formulas (1.6), (1.10), and 
(1.11), this equality can be rewrit ten as 

1 1 V f~l Vb 1 2 a  2x~ ( ~ )  (I)55 + ~ - ~ ( g , ,  + (I),,) + exp - = 0. 

Subst i tut ing here the expressions for gu, and Ouu, we obtain 

2a 2n/~ exp - -- 2a v / E e x p  - . (1.15) AO = ~{{ + ~ ,1  = g,~ + 2O,~ + 
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To complete the formulation of the boundary-value problem for Eq. (1.12), we should impose the 
conditions on the solid boundary. According to the results obtained in [7, 8], we should not require satisfaction 
of the adhesion conditions on the entire solid boundary. (As mentioned above, this can lead to the divergence 
of the Dirichlet integral, i.e., to an infinite dissipation rate of the kinetic energy in the fluid and the loss of the 
physical sense of the solution.) Thus, the boundary 77 = 0 is divided into two parts: 0 < ~ < ~s and ~ /> ~s, 
where ~s is the small parameter. The adhesion conditions are imposed only on the second (larger) part of the 
boundary (they have already been used in deriving ~brn and Cp): 

~ = 0 ,  ~ = 0  for r / = 0 ,  ~ > ~ s .  (1.16) 

The condition �9 = 0 is preserved on the first part of the boundary, and the ideal slipping condition [7] is used 
instead of the second condition, which yields 

1 Vb 

~ =  v/~ 2a" 
With account that ~ = 0, the conditions on the first part of the boundary are 

1 Vb 
�9 = 0 ,  A@= V r~2a for r ]=0,  0 < ~ < ~ s .  (i.iT) 

(The ideal slipping condition is chosen from various slipping conditions [7] to confine the hypothesis of local 
self-similarity of the flow near the moving contact line.) Thus, the mathematical problem (1.12), (1.13), 
(1.15)-(1.17) is posed. This problem is numerically solved below. 

2. N u m e r i c a l  So lu t ion .  Since the flow region is not compact and there are singularities in the 
coefficients at r = 0, problem (1.12), (1.13), (1.15)-(1.17) is numerically solved in a quarter of a circle: 
0 ~< arctan(r]/~) ~< rr/2 and R ] ~< ~2 + 772 • R~, where Rs and Rb are chosen in a special manner (see below). 
For convenience of numerical solution in the chosen domain, the problem is rewritten in the polar coordinates 
rp = ~f~ + r/2 and 0p = arctan(r]/~), in which the chosen sector develops into a rectangle: 

m(I) ~ - t M ,  

/x~o+~ rp~-~rp+~ =0, 

where w is the vorticity. The boundary conditions in the new terms are 

r = r v -  dl exp - din, w = ~ e x p  - 
0 0 

~P--0, r at r p > r s ,  w = l / v / ' ~  at rp<~rs 

for/gp ---- 7r/2 and 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

for 0p = 0. (Since the factor Vb/(2a)  is present in all boundary conditions, it can be omitted for the present.) 
The following conditions are imposed on specially introduced boundaries rp = Rs and rp = Rb. For 

rp = Rs, we seek the solution in the form of the Moffatt solution [9]: �9 = ~-'~r~hk(Op). In the initial equation 
k----1 

(2.2), because of the smallness of the second and third terms in its left side for rp --* O, we can ignore 
all the terms except for /kw. In fact, we seek a solution of the approximate equation AA~ = 0, where 
/k = 02/Or~ + O/(rpOrp) + c92/(r2002) is the Laplace operator in the polar coordinates. To resolve uniquely 
the resultant equation, we use the boundary conditions of continuity of ~ and w at the interface points, i.e., 

gP 7r = 
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This allows us to write the following condition to accuracy to small quantities of order r 4 for r v = Rs: 

The radius Rb is chosen so that  the conditions assumed valid for rather large rp were also valid, namely, 
1) both  velocity components  0~ /0~  and 0O/0r# and vorticity w tend to zero as rp --+ oo; 
2) after iqntroducing 

and differentiating 

X(rp) = ~ e p = , / 2  = 

rp l 

,'p dlJexp(-m214)am 
0 0 

rp  oo 

Ox(rp)/Orp = 1 - ( 1 / v ~ ) f e x p ( - r n 2 / 4 ) d m  - - 1 - ( l i v ~ ) ( f e x p ( - m 2 / 4 ) d r n  - f exp(-rn2/4) drn) 
0 0 rp 

oo 

= (1/x/-~)fexp (-m2/4)dm > 0 
rp 

for all rp > 0, we find that  x(rp) is a monotonic nondecreasing function and x(rp) ~ c3 > 0 for rp >> 1. (It 
was found numerically that  c3 -~ 1.13.) 

Thus,  the following conditions should be valid for a properly chosen Rb: 
0r o~ 

w = O, On - Or----p = 0, (2.6) 

where n is the external normal to the boundary, which should ensure compatibi l i ty  at the interface points: 

ep=~ /2 ( Rb ) ( Tr ) 
-~ 03 rp=Rb 7 ' 

Op=~12(Rb) = c3, 'b Op=o (Rb) = O, 

op=o ( Rb ) = ,o Tp=Rb(0), 
0r 

~n o,=o(Rb) = -~n lr,=Rb(O)" 

Thus,  problem (2.1)-(2.6) is ready for numerical solution. It should be noted that  the conditions for 
the s t ream function r are chosen at all four boundaries: the  Dirichlet conditions on three boundaries and the 
Neumann condition on one boundary (Rp = Rb). For the  vorticity w, the  Dirichlet conditions are imposed 
on three boundaries. The Dirichlet condition is also satisfied on the fourth boundary  (0p = 0) for rp ~< rs, 
whereas the boundary condition for rp > r~ is obtained from the conditions for �9 in the course of numerical 
solution using the Thorn formula [10]. 

Since of greatest interest is the region adjacent to the origin, we pass to the logarithmic coordinates 
7 = In rp, and 0p remains unchanged (which corresponds to the transition to a nonuniform mesh with smaller 
cells in the  domain of interest). The equations take the  form 

e x p ( - 2 7 )  ~ + 002] = -03; (2.7) 

io203 1lo  03) (2.s) 
exp ( - 2 7 ) \ 0 7 2  + ~-~p2/ + 2 k.07 + ----0, 

and the boundary conditions are 

exp (3') l 

1 dtfexp( = ---~exp( , = -~-)drn, exP4(--27) ) t~lOv=z] 2 exp (~') ~r~ i -- 030p=~/2 
0 0 
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Fig. 1 Fig. 2 

r/ 
3 - -  o.os 

0 1 2 3 

1 

4 2 4 6 ,~ 

Fig. 3 Fig. 4 

r Op=o Cop ov=o w Op=o 1 (2.9) = O, 7 > %1: = O, 7 ~< %t: = V/-~-, 

r ( 4 - ~  1 ) [ 1 0r = 0 ,  w = , b = 0 .  w, a3' 3'=3"b = exp (23') cos 20p - ~ , 3'=7, -- 

Problem (2.7)-(2.9) is solved by the pseudo-transient method (i.e., a fictitious time is introduced) using 
the Peaceman-Rachford scheme by means of splitting equations relative to directions with a "cross" stencil. 
The difference equations for r and w derived in this manner have the first order of approximation relative to 
the fictitious time and the second order relative to the spatial coordinates. The resultant scheme is absolutely 
stable. All four difference equations are solved by tridiagonal sweeping. The condition of diagonal prevalence 
is fulfilled for r automatically and for w in the case of a rather small step in 7. To calculate the double 
integrals of probability (used in the condition.on the free boundary and in deriving ~-'m and ~p), we used the 
trapezoidal approximation. 

3. N u m e r i c a l  Resul ts .  The results of numerical calculations are shown in Figs. 1-4 (they were 
obtained using a code written in PASCAL, and the calculated data arrays were graphically represented using 
the SULFER system of the Golden Software Company). Figure 1 shows the isolines of the calculated stream 
function r in the plane of the Cartesian coordinate system (~, T/) fitted with the moving contact line. Figure 2 
shows the isolines of the total stream function (i.e., all three components r ~p, and em are taken into account) 
on the plane (~, 77). The calculated vorticity w = -zXr 77) and the total vorticity (i.e., with account of the 
contribution of vorticities corresponding to ep and era) in the same coordinate system are plotted in Figs. 3 
and 4, respectively. 
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The results show that  the calculated vorticity w never changes its sign and is nonnegative within the 
numerical domain considered. Based on these calculations, we propose the hypothesis that w is nonnegative on 
the entire quarter of the plane 0 ~< rp < oc, 0 <~ 0p <~ ~r/2. To confirm the hypothesis proposed, we introduce 
a new function u(rp,Op) such that w(rp, Op) = exp(-r2/4)u(rp ,  Op). After that ,  the initial equations (2.1) and 
(2.2) become 

r 2 
A~ --exp ( = - 4 ) u ( r , , 0 , ) ,  (3.1) 

Au-  +u =0. (3.2) 

Equation (3.2) is elliptical, like Eq. (2.2); contrary to the latter, it satisfies the principle of the maximum 
[11]. The boundary conditions (2.3) and (2.4) on the solid and free boundaries for w(rp, Op) yield the following 
conditions for u(rp, 0p): 

i 7r 1 /r. 2 , 
u =  V ~  for Op= ~, u = ~ e x P L 4 )  for Op=O, rp<~rs 

(if rp > rs, the condition for u is found from the conditions for �9 in the course of numerical solution using 
the Thorn formula; the values of u for rp > rs are positive). The assumption that  u is nonnegative and w is 
limited allows us to conclude that the vorticity w exponentially decreases as rp -+ oo. 

From the physical viewpoint, the proposed hypothesis has the following meaning. In the Cartesian 
coordinate system (x, y) introduced previously and corresponding to (rp, Op), the shear stress Pz,v related to 
the stream function �9 can be rewritten as follows [6]: 

(02r 02r r02  02r 

for y = 0, since 02r 2 = 0 because of the condition r = 0 on the wall. Thus, the unchanged sign of w is 
identical to the unchanged sign of the corresponding shear stress Pzv- If w/> 0 within the entire region under 
study in accordance with the hypothesis, we have Pxy ~< 0, which agrees with the physics of the process. 

Finally, it should be noted that the qualitative results are not changed by varying the small parameter 
of the problem r~ within 0.0007 to 0.02. 

4. C o m m e n t s .  First of all, we have to estimate the dimensionless parameters for a typical situation. If 
we choose water at room temperature  with a = b = 10 cm and V = 10 cm/sec  as a fluid, we obtain Re = 104, 
Ca = 1.33 �9 10 -3, and the Mach number M = V/~ = 6.7 �9 10 -3 (fi is the speed of sound). This means that 
the influence of fluid compressibility is negligibly small for times of the order of 10 -4 sec or greater. In other 
words, the effect of fluid compressibility is localized in time, whereas the  effect of viscosity is localized in 
space. For the time moment  t = 10 -4, the thickness of an unsteady boundary layer near the solid boundaries 
is 6 = ~ = 10 -3 cm, i.e., slightly smaller than the initial height of the fluid column. 

Up to now, the role of gravitation was not taken into account in the  process considered. It is important 
for high Bond numbers B = p~a2/o ", where ~ is the acceleration of gravity. In particular, we cannot ignore 
the effect of gravitation for a given set of parameters under ground-based conditions, though it is possible 
to conduct the corresponding experiment under the conditions of a practically zero-gravity state. Another 
possibility is to decrease the linear scale and simultaneously increase the characteristic velocity. For example, 
if a = 0.1 cm and V = 30 cm/sec, we obtain Re = 300, Ca = 0.04, and B = 0.13 for the ground-based 
conditions. 

The next important issue is the physicM realization of the Ovsyannikov solution. The initial data for 
this solution do not agree with the velocity distribution resulting from the instantaneous motion of the solid 
plates toward each other. (This distribution for a planar analog of the problem was obtained in [12], and 
the transitional process with account of fluid compressibility for small t imes was studied in [13].) As noted 
in [12], if the ratio a/b is small, then the linear distribution of velocity in the initial data is close to that 
predicted by the classical theory of hydrodynamic hammer. The a t tempt  to realize the same initial conditions 
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for greater values of a/b leads to a quadratic dependence of the pulse distribution of the initial pressure at 
the side boundary versus the vertical component (which can, probably, be ensured by explosive loading of the 
fluid). 

A critical moment of the model proposed is the assumption that the contact angle equals ~r/2. 
Otherwise, we would have neither the exact solutions, which describe the motion of an ideal capillary fluid, 
nor any results on solvability of the corresponding initial-boundary problem for the Euler equations. However, 
if this solution is known (for instance, numerically), it is possible to construct an unsteady axisymmetric 
boundary layer near the free boundary of the fluid bridge following the method proposed by Batishchev and 
Srubshchik [14] who considered a similar planar problem. 

The specific role of ~r/2 is related to the fact that, for an arbitrary value of the contact angle, the solution 
of the corresponding problem for the Navier-Stokes equations has, strictly speaking, a power singularity at 
the corner point of the boundary [15]. This circumstance requires a more detailed study of the flow structure 
inside the corner region. The free part of the boundary is no longer asymptotically linear; probably, this line 
will have an infinite curvature at the contact point in the plane (r, z). 

Finally, we should briefly discuss the choice of the slipping condition. The hypothesis of local self- 
similarity of the flow in the corner region simplifies our consideration and at the same time corresponds to 
the self-similar character of the boundary-layer flow. Still, it is desirable to have some additional arguments 
for a rational choice of the small parameter rs. It should be taken into account that,  for an arbitrary value of 
the parameter rs, the shear stress on the solid wall in the solution of the problem posed increases infinitely 
at the point where the adhesion condition is replaced by the ideal slipping condition (this fact follows from 
the results of [8]). At the same time, according to [16], the proper choice of this parameter allows one to set 
contraints on the shear stress. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01- 
00818). 
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